Purpose of Checklist:
The State Environmental Policy Act (SEPA), Chapter 43.21C RCW, requires all governmental agencies to consider the environmental impacts of a proposal before making decisions. An environmental impact statement (EIS) must be prepared for all proposals with probable significant adverse impacts on the quality of the environment. The purpose of this checklist is to provide information to help you and the agency identify impacts from your proposal (and to reduce or avoid impacts from the proposal, if it can be done) and to help the agency decide whether an EIS is required.

SUMMARY

A. BACKGROUND

1. Name of proposed project:
 Jackson Gulch Road Slide Repair

2. Name of applicant:
 Snohomish County Public Works

3. Address and phone number of applicant and contact person:
 3000 Rockefeller Avenue, M/S 607
 Everett, WA 98201
 Contact Person: Crilly Ritz, Senior Planner
 Transportation and Environmental Services Division
 (425) 388-3488 ext. 4586 or
 crilly.ritz@snoco.org

4. Date checklist prepared:
 May 29, 2015

5. Agency requesting checklist:
 Snohomish County Public Works

6. Proposed timing or schedule (including phasing, if applicable):

Snohomish County Public Works proposes to construct roadway repairs in 2015 pending regulatory approval and funding availability.
7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? If yes, explain.

 No other future additions, expansion, or further activities have been identified at this time.

8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal.

 - Geotech Report

9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? If yes, explain.

 No applications are pending.

10. List any government approvals or permits that will be needed for your proposal, if known.

 Land Disturbing Activity Approval-Snohomish County Public Works

11. Location of proposal:

 The repair project site is located in unincorporated northwest Snohomish County on Jackson Gulch Road (236th Street NW), approximately 0.6 mile west of Interstate 5 in Section 1, Township 31 North, Range 4 East, W.M. of Snohomish County. The project activity would stabilize slopes downslope from the existing roadway travel lanes. *(Figure 1-Project Area Map).*

12. Give a brief, complete description of your proposal, including the proposed uses and the size of the project and site.

 Snohomish County Public Works proposes to install a spiranail reinforcement system to stabilize unstable slopes adjacent to and downslope from Jackson Gulch Road (236th Street NW) near the 100 block vicinity. A one-lane closure has been in place on Jackson Gulch Road where the eastbound travel lane has been damaged by slope instability. *(See Photo 1- Existing Damaged Jackson Gulch Road in Appendix A.)* Continuing slope instability poses a threat to the remaining roadway. As part of the repair, four rows of 22-foot spiranails would be driven into the roadway embankment slopes to provide slope stability. “Spider” slope reinforcement would be attached to each of the spiranails at the slope surface. The “Spider” reinforcement would form a reinforced wire web over the slope face that enables slope reinforcement. One row of 20-foot drain nails would be driven below the spiral nails at the base of the embankment to promote slope drainage. The drain nails would also work to promote slope stability. The spiranail and “Spider” reinforcement system would extend for 180 feet at the Jackson Gulch Road (236th Street NW) site. *(See Site Plan, Elevation, Details and Reinforced Slope Section drawings in Appendix A.)*

 With no viable detour route available, the current one-lane closure at Jackson Gulch Road (236th Street NW) would remain in place during repair work construction. While the proposed work would occur primarily in existing roadway right-of-way, additional right-of-way is required to be acquired to accommodate a portion of the spiranail system at the Jackson Gulch Road site. The repair would maintain the existing roadway alignment, and the existing closed roadway travel lane would be used as a staging area to accommodate construction machinery access. Intermittent
road closures may be required to accommodate equipment access and ensure work site safety. If road detours become necessary, notice would be provided to project area residents and the general public and a signed detour route would be provided.

SCPW would revegetate disturbed areas once slope stabilization repairs have been completed.

B. ENVIRONMENTAL ELEMENTS

1. Earth

a. General description of the site (shown in bold type): *flat, rolling*, hilly, steep slopes, mountainous, other.

The project site has steep topography both upslope and downslope from the roadway at the repair locations. The roadway has been constructed in a roadway cut with embankment fill placed in downslope areas.

b. What is the steepest slope on the site (approximate percent slope)?

The project site has steep slopes approximately 100% or greater.

c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)? If you know the classification of agricultural soils, specify them and if you know the classification of agricultural soils, specify them and note any agricultural land of long-term commercial significance and whether the proposal results in removing any of these soils.

The Natural Resources Conservation Service identifies the *Tokul-Winston* soil series at the Jackson Gulch Road (236th Street NW) site. The soil series is described below:

Tokul-Winston gravelly loam, 25-65 percent slopes

Tokul-Winston map units are found on till plains and terrace escarpments. This unit is about 50 percent Tokul gravelly loam and about 30 percent Winston gravelly loam. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

Onsite geotechnical investigations conducted as part of the project’s preliminary engineering have included geotechnical test borings to better understand sub-surface conditions. A description of the onsite sub-surface materials at the Jackson Gulch Road site is described below:

- **Fill (Hf):** Fill placed during roadway construction, consisting of loose to dense granular material, in the form of the roadway subgrade and fill embankment. The fill at the site ranges from clean sand to silt with a varying amount of gravel. The embankment below the roadway has a 2-foot-thick surficial layer of angular quarry spalls. Locally, riprap 2 to 3 feet in diameter is present on the fill embankment.

- **Colluvium (Hc):** This unit is deposited on slopes by mass wasting processes, including rockfall, soil creep, and non-concentrated erosion caused by sheet wash and rain splash. The colluvium at the project site consists of heterogeneous silt and sand with a varying amount of gravel. This unit is difficult to distinguish from fill at the site because the parent
material of both units is recessional outwash. The colluvium is found at the ground surface or underlying the fill.

- **Recessional Outwash (Qyro):** This unit is the most predominant at the project site. The recessional outwash typically consists of loose to dense, clean to silty sand. This unit is interlayered with thin clay and silt layers of the underlying recessional lacustrine unit. The recessional outwash deposits forms an unconfined aquifer at the project site.

- **Recessional Lacustrine Deposits (Qvr):** This unit occurs in relatively thin, discontinuous layers, typically consisting of stiff, lean clay and medium dense silt. The clayey silt is generally low to medium plasticity. Cobbles and boulders are rare, but are more likely at the contact with underlying till. Seeps present below the roadway are likely related to groundwater perching on the clay and silt layers.

- **Vashon Till (Qt):** This unit consists of gravelly, silty sand to silty, gravelly sand with nonplastic to low plasticity fines. Till is a heterogeneous deposit with a wide range of grain size that shows little or no sorting by water. Cobbles and boulders are common. Till is glacially overconsolidated, so it is generally very dense with strengths similar to very low-strength rock or lean-mix concrete. It may contain cleaner seams and fractures that may transmit water.

d. Are there surface indications or history of unstable soils in the immediate vicinity? If so, describe.

Unstable soils are located downslope from the roadway.

The site investigations at the Jackson Gulch Road site determined that the landslide is approximately 190 feet wide at the Jackson Gulch Road site. Bulging ground and bowed trees extend approximately 80 feet downslope from the head scarp. Although no inclinometer data exist for the Jackson Gulch slide, site investigations interpreted the slide plane as approximately 10 feet deep, based on site geometry and soil changes in the explorations. The landslide is likely a result of several factors, including poorly placed and compacted fill soil, overloading relatively weak recessional soils with fill, and adverse stratigraphy at the site consisting of recessional outwash overlying recessional glaciolacustrine deposits.

e. Describe the purpose, type, total area, and approximate quantities and total affected area of any filling or grading proposed. Indicate source of fill.

A shallow surface excavation would occur on the slope face at each spiranal location to accommodate spiranal attachment to "Spider" reinforcement. Approximately 5 cubic yards of slope material would be removed at the Jackson Gulch Road within the roadway embankment slope to accommodate spiranal and "Spider" reinforcement installation.

The existing damaged roadway asphalt would be removed from Jackson Gulch Road and rebuilt with new asphalt and necessary base course rock from local quarries. Approximately 20 cubic yards of asphalt would need to be excavated and replaced with approximately 40 cubic yards of rock fill placed below the new asphalt.
g. About what percent of the site will be covered with impervious surfaces after project construction?

The slope areas receiving spiral nail reinforcement would have no impervious surface area.

h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any:

No significant adverse impacts are anticipated. Application of erosion control Best Management Practices (BMPs) would be used throughout project construction. These BMPs would be in place around stockpiles of excavated materials, in active construction areas and would be designed to prevent sediments from entering surface water and storm drainage systems located downslope from the project site. Excavated soils not re-used in the project area would be disposed of offsite at a permitted facility. Bare soil areas would be seeded and planted where required after establishment of final slope reinforcement.

All project activity would be conducted subject to implementing Best Management Practices and would comply with the provisions of all applicable permits. Best Management Practices may include, but are not limited to the following:

- Protective covering would be placed over exposed soil areas to prevent sediments and other contaminants from entering the roadside areas near the streams. Protective covering would be clear plastic sheeting, straw mulch, jute matting, or erosion control blanket per Department of Ecology requirements.
- A temporary erosion and sediment control plan would be implemented during construction.
- Erosion and sedimentation control measures would be routinely inspected maintained and repaired. Damaged or inadequate erosion and sedimentation control measures would be corrected quickly.
- Any bare soil that may result from project activity would be reseeded or covered with mulch immediately following construction.

2. Air

a. What types of emissions to the air would result from the proposal (i.e., dust, automobile odors, and industrial wood smoke) during construction operation, and maintenance when the project is completed? If any, generally describe and give approximate quantities if known.

Construction equipment, construction-related activities, and vehicles carrying workers and equipment to and from the site would result in minor, temporary increases in emissions and dust. There would be no increase in emissions once construction is complete. During grading, dust levels may increase temporarily. In addition, minor temporary increases in emissions would be released from construction equipment.

b. Are there any off site sources of emissions or odor that may affect your proposal? If so, generally describe.

No off site sources of emissions would affect construction.

c. Proposed measures to reduce or control emissions or other impacts to air, if any.
During construction, equipment emissions would not exceed state and national air quality standards. The project would use only equipment and trucks in optimal operational condition. Dust control measures would be implemented to minimize airborne dust.

3. Water

a. Surface Water

1) Is there any surface water body on or in the immediate vicinity of the site (including year round and seasonal streams, saltwater, lakes, ponds, wetlands)? If yes, describe type and provide names. If appropriate, state what stream or river it flows into.

There is a stream that develops from embankment seepage at the southwest edge of the project. There is a slope/seep wetland located immediately downslope from the project.

2) Will the project require any work over, in, or adjacent to (within 200 feet) the described waters? If yes, please describe and attach available plans.

The project activity would require work adjacent to the slope wetland located downslope from the roadway. No wetland impacts would occur. The work would include limited vegetation clearing. Limited excavation would be required for installation of each spiral nail reinforced by reinforcement unit.

3) Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material.

The project proposes no dredge activity in wetlands or surface waters.

4) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and approximate quantities if known.

No withdrawals or diversions are proposed.

5) Does the proposal lie within a 100-year floodplain? If so, note location on the site plan.

Project work would not occur within a 100-year floodplain.

6) Does the proposal involve any discharges of waste materials to surface waters? If so, describe the type of waste and anticipated volume of discharge.

No waste materials would be discharged to surface waters.

b. Groundwater

1) Will ground water be withdrawn from a well for drinking water or other purposes? If so, give a general description of the well, proposed uses and approximate quantities withdrawn from the well? Will water be discharged to groundwater? Give general description, purpose, and approximate quantities if known.
No. The project proposes no groundwater withdrawals or discharges of waste materials to surface waters. If areas of excavation require dewatering during construction, pumped water would be treated with application of sedimentation control Best Management Practices (BMPs) prior to discharge to the ground for infiltration.

Drain nails would be installed at the base of the repair to improve slope stability. Groundwater would seep from the drain at the base of the embankment repair in a manner similar to its current seepage.

2) Describe waste material that will be discharged into the ground from septic tanks or other sources, if any (for example: domestic sewage; industrial, containing the following chemicals; agricultural; etc.). Describe the general size of the system, the number of such systems, the number of houses to be served (if applicable), or the number of animals or humans the system(s) are expected to serve.

Not Applicable

c. Water Runoff (including storm water)

1) Describe the source of runoff (including stormwater) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters? If so, describe.

Currently, storm water runoff from the existing roadway sheet flows by natural dispersion into the roadside areas and disperses into surrounding vegetation. No additional stormwater runoff would be generated from the proposed slope reinforcement repair work.

2) Could waste materials enter ground or surface waters? If so, generally describe.

Erosion of onsite soils during construction could potentially transport soil sediments to a stream channel located downslope from the site. The erosion risk is expected to be minimal for most of the construction because only drain nail installation would occur in close proximity to the stream. Minimal soil disturbance is anticipated.

3) Does the proposal alter or otherwise affect drainage patterns in the vicinity of the site? If so, describe.

The project proposes to maintain existing drainage patterns described in #1 above.

d.) Proposed measures to reduce or control surface, ground, and runoff water, and drainage pattern impacts, if any:

Construction would occur primarily during the drier summer and early fall season. Temporary Erosion and Sedimentation Control measures and a Stormwater Pollution Prevention Plan (SWPPP) would be developed as part of the final project plans and included in construction contract documents. During and after construction, BMPs including, but not limited to, silt fences, mulching, and filter berms would be used to control and minimize adverse impacts in the event that there are precipitation events that result in surface runoff and sediment transport. Bare soil areas exposed by construction activities would be reseeded, covered with mulch and/or planted to control erosion when final site grades are established.
The project would comply with Snohomish County drainage regulations (chapter 30.63A SCC) that regulate storm water runoff from all new development and redevelopment. Best management practices would be used throughout construction, including working during low or no flow conditions (July-September) and placing protective covering over exposed soil areas.

4. Plants

a. List the types of vegetation found on or in close proximity to the site:

Deciduous trees: red alder, bigleaf maple, vine maple, black cottonwood.
Evergreens: western red cedar, western hemlock, Douglas-fir
Shrubs: salmonberry, beaked hazelnut, thimbleberry, red huckleberry, Himalayan blackberry, Japanese knotweed, evergreen blackberry
Grasses: native and non-native species
Pasture: None
Crop or grain: None
Orchards, vineyards or other permanent crops: none
Wet soil plants: Scouler’s willow
Water plants: None
Other types of vegetation: bracken fern

b. What kind and amount of vegetation will be removed or altered?

Clearing and grubbing would remove approximately 5,000 square feet of vegetation during construction in adjacent areas to accommodate heavy machinery site access during repair construction. Roadside forested, scrub/shrub and graveled areas comprise the area proposed for disturbance during construction. No trees would be removed.

c. List threatened or endangered plant species known to be on or near the site.

No threatened or endangered plant species are known to be on or adjacent to the project site. If such plant species are found, all project work would comply with the requirements of the Endangered Species Act and other applicable regulations.

d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation of the site, if any:

Vegetation disturbance would be minimized to the extent practicable during the slide repair work. Mowing of slope vegetation would occur prior to site work. Trimming of trees and shrubs may also occur and would be limited to areas where obstructions to installation access are located. Where required, bare soil areas would be seeded after final site work has been completed.

e. List all noxious weeds and invasive species known to be on or near the site.

Himalayan blackberry and knotweed, introduced invasive weed species, are present at the project site and cover extensive portions of the roadside slope area.
5. Animals

a. List any birds and animals which have been observed on or near the site or are known to be on or near the site. Examples include: (shown in bold type):

 birds: hawks, eagle, songbirds
 mammals: none
 fish: none

b. List any threatened or endangered species known to be on or near the site.

 Threatened or endangered fish and wildlife species are not known to be on or near the site. Endangered Species Act listed threatened salmonid species use streams outside of the project area. Marbled murrelets are likely to be located within a half-mile from the project site.

c. Is the site part of a migration route? If so, explain.

 Yes. The site is within the Pacific Flyway. Migratory waterfowl can be observed in the greater project vicinity. The project site is located within 50 miles of salt water and could potentially have marbled murrelets in proximity to the site as part of their daily migration back and forth from nesting areas to saltwater.

d. Proposed measures to preserve or enhance wildlife, if any:

 Project construction would occur during the summer months when rainfall is minimal. This would help to minimize erosion and prevent sedimentation of surface waters. Bare soil areas would be revegetated after large woody debris placement and final site grades at the wetland creation site have been established. Additional timing restrictions would also be applied if it is determined that the project could adversely affect eagles, marbled murrelets, and other bird species in the project area.

6. Energy and Natural Resources

a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project’s energy needs? Describe whether it will be used for heating, manufacturing, etc.

 No changes in energy use would result from the completed proposal. No energy is needed to meet the completed project’s needs. However, during construction minor amounts of fuel would be used by construction equipment during large woody debris installation, site grading for the mitigation area and paving activity.

b. Would your project affect the potential use of solar energy by adjacent properties? If so, generally describe.

 No.

c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any:

 None.
7. Environmental Health

a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste that could occur as a result of this proposal? If so, describe.

No potentially hazardous materials have been identified at or in proximity to the project site. Fuel spills and other construction equipment fluids could potentially occur during construction.

1) Describe any known or possible contamination at the site from present or past uses.

There are known or possible sources of contamination at the site from present or past uses. The project sites are located in rural areas with less potential for site contamination.

2) Describe existing hazardous chemicals/conditions that might affect project development and design. This includes underground hazardous liquid and gas transmission pipelines located within the project area and in the vicinity.

There are no known pipelines or other sources of hazardous chemicals in in the project areas. There are no existing hazardous chemicals or conditions that are expected to affect slope reinforcement installation.

3) Describe any toxic or hazardous chemicals that might be stored, used, or produced during the project’s development or construction, or at any time during the operating life of the project.

No toxic or hazardous chemicals would be stored, used, or produced during construction other than construction equipment fuel and lubricants required for equipment operation.

4) Describe special emergency services that might be required.

Emergency response vehicles may be required in the event of a construction accident. The completed project would not require any additional emergency services.

2) Proposed measures to reduce or control environmental health hazards, if any:

Spill control and clean-up material would be staged onsite. The crew leader or other designated person would have a spill control plan and be trained in spill prevention and clean up. All equipment would be well maintained and in good repair to prevent the loss of any petroleum products. Refueling and vehicle maintenance would generally occur off-site.

b. Noise

No noise in the area would affect the project.

1) What types of noise exist in the area which may affect your project (for example: traffic, equipment, operation, aircraft, other)?

There are no noises in the project area that would affect the project.
2) What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site.

During construction (short-term) there would be increased noise levels generated by heavy equipment. These noise levels would exceed existing background noise levels associated with the rural project area. Typical noise associated with roadway traffic is expected once the roadway is opened to through traffic after construction. There will be no change in the types and levels of noise as a result of installing the slope reinforcement.

3) Proposed measures to reduce or control noise impacts, if any:

Other than limiting construction to daytime hours and primarily on weekdays, no additional measures to reduce or control noise impacts are proposed.

8. Land and Shoreline Use

a. What is the current use of the site and adjacent properties? Will the proposal affect current land uses on nearby or adjacent properties? If so, describe.

The current use of the sites is as a Snohomish County-maintained road located in roadway right-of-way. Land use ranges from primarily rural residential to agricultural land uses.

b. Has the project site been used as working farmlands or working forest lands? If so, describe. How much agricultural land or forest land of long-term commercial significance will be converted to other uses as a result of the proposal, if any? If resource lands have not been designated, how many acres in farmland or forest land tax status will be converted to nonfarm or nonforest use?

The project site has not been used for working farmlands or working forest lands. The slope areas are located above lower elevation agricultural areas.

1) Will the proposal affect or be affected by surrounding working farm or forest land normal business operations, such as oversize equipment access, the application of pesticides, tilling, and harvesting? If so, how?

No.

c. Describe any structures on the site.

There are no buildings or other structures on the sites where slope reinforcement would occur.

d. Will any structures be demolished? If so, what?

No structures would be demolished.

e. What is the current zoning classification of the site?

The project site is located in an area zoned R-5 (Rural Residential-5 acre) with areas in lower valley areas downslope zoned Ag-10 (Agriculture-10 acre).
f. What is the current comprehensive plan designation of the site?

The Snohomish County Comprehensive Plan designates the land area at the project site for *Rural Residential 5 (1 du/5 acre)*. Lowland areas downslope are designated *Riverway Commercial Farmland*.

g. If applicable, what is the current shoreline master program designation of the site?

Not Applicable.

h. Has any part of the site been classified critical area by the city or county? If so, specify.

Snohomish County regulates wetlands and geologically hazardous areas (erosion, landslide) as critical areas. The slope wetland located downslope from the Jackson Gulch Road (236th Street NW) is regulated by Snohomish County Critical Area Regulations (CAR) as a critical area. CAR also regulates land use activities in critical area buffers that extend from the wetland.

i. Approximately how many people would reside or work in the completed project?

None.

j. Approximately how many people would the completed project displace?

The project would not displace residents. The majority of project work would occur within existing right-of-way, but will require acquisition of approximately 16,820 square feet of additional right-of-way downslope from the existing road to accommodate spiral nail slope reinforcement installation at the Jackson Gulch project location.

Right-of-way acquisition of private property is required for spiral nail installation at the Jackson Gulch Road site. When acquisition or displacement becomes necessary, a complete and detailed set of relocation and right-of-way plans are developed. Chapter 8.25 and 8.26 of the Revised Code of Washington would govern right-of-way acquisition proceedings. These laws ensure fair and equitable treatment of those displaced. In addition, right-of-way purchases would be in accordance with Civil Rights Act Title VI legislation and the federal Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 as amended (42 U.S.C.). These laws would provide payment for reasonable and necessary costs to relocate persons displaced by the project and ensure prompt and fair relocation payments and requires agency review of aggrieved parties. Acquisition proceedings include appraisal, determination of just compensation, presentation of an offer and compensating the individual. Acquisition proceedings within the project vicinity would not be initiated until the environmental review process has been completed.

k. Proposed measures to avoid or reduce displacement impacts, if any:

None.

l. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any:

The slide repair project is consistent with the Snohomish County Growth Management Act Comprehensive Plan – 2007 Transportation Element. The project is also identified
in the Snohomish County Transportation Improvement Program for 2015-2020. The proposed repair is designated as a Road Bank Stabilization project in the 2015-2020 Six-Year Snohomish County Transportation Improvement Program (TIP # D.05.11 Jackson Gulch Slide Repair).

m. Proposed measures to ensure that the proposal is compatible with nearby agricultural and forest lands of long-term commercial significance, if any:

No measures are proposed.

9. Housing

a. Approximately how many units would be provided, if any? Indicate whether high, middle or low-income housing.

None.

b. Approximately how many units, if any, would be eliminated? Indicate whether high, middle, or low-income housing.

None.

c. Proposed measures to reduce or control housing impacts, if any:

N/A.

10. Aesthetics

a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed?

Not Applicable.

b. What view in the immediate vicinity would be altered or obstructed?

The slope reinforcement would not alter or obstruct views.

c. Proposed measures to reduce or control aesthetic impacts, if any:

The project would reduce aesthetic impacts by revegetating the site after work is completed.

11. Light and Glare

a. What type of light or glare will the proposal produce? What time of day would it mainly occur?

The project proposes no features that would produce glare or light.

b. Could light or glare from the finished project be a safety hazard or interfere with views?

No.

c. What existing off-site sources of light or glare may affect your proposal?
d. Proposed measures to reduce or control light and glare impacts, if any:

None.

12. Recreation

a. What designated and informal recreational opportunities are in the immediate vicinity?

There are no designated or informal recreation opportunities in the immediate project area.

b. Would the proposed project displace any existing recreational uses? If so, describe.

No existing recreational uses would be displaced.

c. Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project or applicant, if any:

No measures are proposed.

13. Historic and Cultural Preservation

a. Are there any buildings, structures, or sites, located on or near the site that are over 45 years old listed in or eligible for listing in national, state, or local preservation registers located on or near the site? If so, specifically describe.

The project site was screened by Snohomish County Public Works to determine its proximity to known archaeological and cultural sites. There is one known recorded site located where ground disturbance activities are anticipated. There are no other archaeological sites, or known places or objects listed on or proposed for national, state, or local registers in the greater project area.

b. Are there any landmarks, features, or other evidence of Indian or historic use or occupation? This may include human burials or old cemeteries. Are there any material evidence, artifacts, or areas of cultural importance on or near the site? Please list any professional studies conducted at the site to identify such resources.

There are no landmarks, features, or other evidence of Indian or historic use or occupation located at the project site, including human burials or old cemeteries. There is one recorded site of cultural importance near the project site. A cultural resources investigation was conducted in 2003 and a report prepared. The report concluded that though previous work had disturbed an adjacent site, that “the current roadwork at road level probably did not impact the site: the uphill side is at a depth at which archaeological deposits would not be expected and the downhill side has previously been modified by original road grading and is on a steep slope that would not be expected to have archaeological deposits.” The proposed work would occur on the downhill portion of the site previously evaluated.
An archeological survey may be conducted as part of the project’s requirements if it is determined necessary to identify whether any resources, otherwise unknown to be in the project area at the present time, could be potentially affected by the project. The project’s land disturbance would occur primarily in roadway embankment fill and in areas that have been otherwise extensively disturbed by recurrent roadway and slope stability repairs, or in subsurface layers where cultural resources would not typically be encountered.

c. Describe the methods used to assess the potential impacts to cultural and historic resources on or near the project site. Examples include consultation with tribes and the Department of Archaeology and Historic Preservation, archaeological surveys, historic maps, GIS data, etc.

A preliminary cultural resources screening was conducted using archaeological site GIS data provided by the Washington State Department of Archaeology and Historic Preservation (DAHP) to Snohomish County as part of a data sharing agreement. One recorded sites was found as part of this preliminary screening.

As part of site visits conducted by Snohomish County staff with tribal representatives, it was determined that there are reduced risks for disturbance of intact cultural sites due to the nature of the onsite soils and the proposed slope stability reinforcement.

A cultural resources investigation may be conducted by an archaeologist at the project site within a defined Area of Potential Effects (APE) to determine the project’s potential effects to below ground resources if determined necessary. Additional consultation as required with area tribes and DAHP would occur prior to project approval.

d. Proposed measures to avoid, minimize, or compensate for loss, changes to, and disturbance to resources. Please include plans for the above and any permits that may be required.

Compliance with state laws is required as part of the proposed work.

The following management recommendations would likely be developed as part of future consultation:

- The proposed project would proceed as planned if no sites are affected by the project. A project specific Unanticipated Discoveries Protocol (UDP) would be developed, including keeping a UDP on site during the entire project.

- If any ground-disturbing activities or other project activities related to this development or in any future development uncover protected cultural material (e.g., bones, shell, stone or antler tools), all work in the immediate vicinity would stop, the area would be secured, and any equipment moved to a safe distance away from the location. The on-site superintendent should then follow the steps specified in the UDP developed for the project.

- If any ground-disturbing activities or other project activities related to this development or in any future development uncover human remains, all work in the immediate vicinity would stop, the area secured, and any equipment be moved to a safe distance away from the location. The on-site superintendent would then follow the steps specified in the UDP developed for the project.
14. Transportation

a. Identify public streets and highways serving the site or affected geographic area, and describe proposed access to the existing street system. Show on site plans, if any.

The project site is located on Jackson Gulch Road (236th Street NW).

b. Is the site or affected geographic area currently served by public transit? If so, generally describe. If not, what is the approximate distance to the nearest transit stop?

There are no transit routes located in the project area. The nearest transit stops would be located at the Stanwood Park and Ride, approximately 7 miles north of the Jackson Gulch project site.

c. How many additional parking spaces would the completed project or nonproject proposal have? How many would the project or proposal eliminate?

None.

d. Will the proposal require any new or improvements to existing roads, streets, pedestrian, bicycle or state transportation facilities, not including driveways? If so, generally describe (indicate whether public or private)

No new roads would be needed. The project is consistent with the Transportation Element of the adopted Snohomish County Growth Management Act Comprehensive Plan.

e. Will the project use (or occur in the immediate vicinity of) water, rail, or air transportation? If so, generally describe.

No.

f. How many vehicular trips per day would be generated by the completed project or proposal? If known, indicate when peak volumes would occur and what percentage of the volume would be trucks (such as commercial and nonpassenger vehicles). What data or transportation models were used to make these estimates?

No additional traffic would be generated by the completed project.

g. Will the proposal interfere with, affect or be affected by the movement of agricultural and forest products on roads or streets in the area? If so, generally describe.

The proposal would not interfere with or be affected by movement of agricultural and/or forest products.

h. Proposed measures to reduce or control transportation impacts, if any:

Traffic control as needed would be provided during construction to maintain roadway and construction site safety. A traffic control plan would be developed. If needed, a signed detour route would be developed and public notice provided.
15. Public Services

a. Would the project result in an increased need for public services (for example: fire protection, police protection, health care, schools, other)? If so, generally describe.

No additional or increased need for public services would result from this project.

b. Proposed measures to reduce or control direct impacts on public services, if any.

Traffic control during construction would be planned, sequenced, and administered to allow continuation of basic services during construction activities in the roadway right-of-way.

16. Utilities

a. Utilities currently available at the site:

There are overhead utilities for electric power in the project area located on Snohomish County Public Utility District poles.

b. Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity which might be needed.

The project proposes no new utilities. Utility pole and attached aerial utility lines would be relocated, if necessary, and coordinated with the utility providers.

C. SIGNATURE

The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision.

Signature: ________________________________ Date: May 29, 2015

Crilly Ritz, Senior Planner
APPENDIX A

Photo 1- Existing damaged Jackson Gulch Road
The existing damaged roadway area would be excavated and fill placed to repair the damaged roadway section. Spiral nails and drain nails would be driven into the roadway embankment area downslope from the roadway to provide slope stability.
Figure 1: Project Area