SNOHOMISH COUNTY ENVIRONMENTAL CHECKLIST

Purpose of Checklist:
The State Environmental Policy Act (SEPA), chapter 43.21C RCW, requires all governmental agencies to consider the environmental impacts of a proposal before making decisions. An environmental impact statement (EIS) must be prepared for all proposals with probable significant adverse impacts on the quality of the environment. The purpose of this checklist is to provide information to help you and the agency identify impacts from your proposal (and to reduce or avoid impacts from the proposal, if it can be done) and to help the agency decide whether an EIS is required.

A. BACKGROUND

1. Name of proposed project, if applicable:

 Machias Cutoff and Williams Road Intersection Improvement (RC 1561)

2. Name of applicant:

 Snohomish County Department of Public Works - Engineering Services Division

3. Address and phone number of applicant and contact persons:

 Matt Ojala, P.E., Project Manager,
 Snohomish County Department of Public Works
 Engineering Services Division
 3000 Rockefeller Avenue M/S 607
 Everett, WA 98201
 (425) 388-3488 ext. 4219

 SEPA Contact Person: Crilly Ritz, Senior Environmental Planner
 Environmental Services Section
 Transportation and Environmental Services Division
 3000 Rockefeller Avenue M/S 607
 Everett, WA 98201
 (425) 388-3488 ext. 4586

4. Date checklist prepared: December 14, 2009

5. Agency requesting checklist: Snohomish County Public Works

6. Proposed timing or schedule (including phasing, if applicable):

 Construction is proposed to begin in Summer 2012.
7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? If yes, explain.
 No

8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal.

 - A Critical Area Study would be prepared to comply with Snohomish County Critical Area Regulations.
 - Biological Assessment documentation would be prepared to comply with Section 7 Endangered Species Act requirements associated with the project's Army Corps of Engineers Section 404 federal permit application.

9. Do you know whether applications are pending by your proposal? If yes, explain.

 The SEPA Checklist would be submitted with future permit applications that may apply to the project.

10. List any government approvals or permits that will be needed for your proposal, if known.

 - Snohomish County Grading and Drainage Approval
 - Washington Department of Fish and Wildlife-Hydraulic Project Approval
 - Army Corps of Engineers Section 404 Permit
 - Endangered Species Act-Section 7 Concurrence from Service Agencies

11. Give a brief, complete description of your project, including the proposed uses and the size of the project and property or site.

 Snohomish County Public Works proposes to construct intersection improvements at the intersection of Machias Cutoff and Williams Road. The purpose of the project is to improve roadway safety. The project would provide a left-turn lane for westbound vehicles traveling on Machias Cut-Off that turn left onto Williams Road, and would also improve stopping sight distance at the intersection.

 The roadway improvements would include providing a 12-foot wide westbound left-turn lane on Machias Cutoff for vehicles turning left onto Williams Road and widening shoulders on Machias Cutoff. The shoulder widening improvements would provide 4-foot wide shoulders that would extend approximately 300 feet west from the intersection and 400 feet east from the intersection.

 Sight distance would be improved for vehicles turning left from Machias Cutoff onto Williams Road and for vehicles turning left from Williams Road onto Machias Cutoff. Property acquisition would be required to accommodate future long-term vegetation maintenance, including annual brush cutting, in the roadway right-of-way that would provide the
improved sight distance. Retaining walls would be constructed on the north side and south side of Machias Cutoff and would reduce the area required for soil excavation and fill embankment slopes.

Existing drainage patterns in the project area would remain the same. The proposed project design would include installing stormwater runoff quality treatment facilities. A location would be identified in the final design phase of the project. Roadway cross-culverts on Machias Cutoff may also require lengthening to accommodate the roadway design improvements.

(See Figure 1: Project Vicinity; Figure 2: Machias Cutoff & Williams Road Intersection Improvement Project Site Plan; Figure 3: Machias Cutoff & Williams Road Intersection Improvement Project - Typical Sections; Figure 4: Sight Triangle Exhibit; Figure 5: Critical Areas)

12. Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range of area, provide the range or boundaries of the site. Provide a legal description, site plan, vicinity map, and topographic map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit application.

The project site is located at the Machias Cutoff and Williams Road intersection in southwestern unincorporated Snohomish County southeast of Lake Stevens. The project limits on Machias Cutoff extend east and west of its intersection with Williams Road. The project is located within Section 20, Township 29 North, Range 6 East, W.M.

B. ENVIRONMENTAL ELEMENTS

1. Earth

a. General description of the site (circle one): flat, rolling, hilly, steep slopes, mountainous, other

The project vicinity is characterized by rolling topography. The project is located on a terrace above the Pilchuck River valley. There are steep slopes, both upslope and downslope from both intersection roadways.

b. What is the steepest slope on the site?

The majority of the project has moderate to steep slopes. The steepest slopes are approximately 100 percent and are associated with roadway sideslopes and roadway embankments. The Machias Cutoff roadway slopes down from west to east at an approximate 7 percent grade through the project site.
c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)?

The Natural Resources Conservation Service identifies one soil series in the project area. The mapped soil series is described below:

Pastik silt loam 8-25 percent slopes
The immediate project area lies within this mapped soil unit. This soil map unit is mapped on terraces. Pastik silt loam is a very deep, moderately well drained soil formed in lake sediment and volcanic ash. Permeability of this Pastik soil is slow and available water capacity is high. A seasonal high water table lies at a depth from 18-30 inches below the surface from December to May. Runoff is medium, and the hazard of water erosion is moderate.

d. Are there surface indications or history of unstable soils in the immediate vicinity?

There are no indications of unstable soils in the immediate vicinity. However, site disturbance of the Pastik soils in the project area is constrained by low-strength soils on steep slopes greater than 15 percent slope that have a seasonal high water table. Excavations for roadway construction or retaining wall installation must be designed to control surface runoff and to stabilize cut slopes.

e. Describe the purpose, type, and approximate quantities of any filling or grading proposed. Indicate source of fill.

Portions of the project area would require excavation of native material to accommodate the intersection improvement construction, and would primarily be associated with installation of retaining walls on the north side of Machias Cutoff east of Williams Road and importing gravel borrow to construct shoulder widening improvements.

The project would require excavating approximately 632 cubic yards of existing native soils and importing approximately 280 cubic yards of gravel borrow and 100 cubic yards of compost amended soil for fill material.

Fill materials such as gravel borrow, permeable asphalt, washed gravel, and compost-amended soil would be obtained from a permitted commercial site.

Stormwater facility design and construction would require additional excavation and importation of fill materials outside of the existing roadway prism. It is estimated that approximately 220 cubic yards of excavation would be required and that approximately 100 cubic yards of fill material would be needed to construct the facility.
f. Could erosion occur as a result of clearing, construction, or use?

Yes. Erosion could occur during grading and other onsite soil disturbance activities. The risk of erosion for project area soils increases if the project area soils are left exposed during construction.

There may be temporary stockpiling of excavation spoils during construction. However, grading activity is not anticipated to result in significant adverse erosion related impacts. Temporary Erosion and Sedimentation Control Best Management Practices (BMPs) would be used for temporary erosion and pollution control. Water flow through areas under construction would be directed to existing roadside drainage ditches or temporary sediment basins. Permanent design features to control erosion and slope stability would be provided by retaining walls that would be installed north and south of the Machias Cutoff roadway.

g. About what percent of the site will be covered with impervious surfaces after project construction?

All of the newly improved roadway intersection would be covered with impervious surfaces. Stormwater runoff from the impervious surfaces would be conveyed and provided with quality treatment. Existing drainage patterns would be retained.

h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any:

No significant adverse impacts are anticipated. Application of erosion control Best Management Practices (BMPs) would be used throughout project construction. These BMPs would be in place around stockpiles of excavated materials, in proximity to project-area streams and ditches, and would prevent sediments from entering surface water and storm drainage systems. Excavated soils not re-used in the project would be disposed of offsite at a permitted facility. Bare soil areas would be seeded and planted where required after establishment of final grades.

Retaining walls would be constructed on Machias Cutoff at the northeast and southwest corners of the intersection. The walls would keep intersection improvements within the existing Snohomish County right-of-way and provide slope stability. Geotechnical investigations of subsurface soils will be conducted to determine a suitable wall type in these areas.

2. Air

a. What types of emissions to the air would result from the proposal (i.e., dust, automobile, odors, industrial wood smoke) during construction and when the project is completed? If any, generally describe and give approximate quantities if known.

During demolition and grading, dust levels may increase temporarily. In addition, minor temporary increases in emissions would be released from construction equipment.
b. Are there any off site sources of emissions or odor that may affect your proposal? If so, generally describe.

No off site sources of emissions would affect intersection improvement construction.

c. Proposed measures to reduce or control emissions or other impacts to air.

During construction, equipment emissions would not exceed state and national air quality standards. The project would use only equipment and trucks in optimal operational condition. Dust control measures would be implemented to minimize airborne dust.

3. Water

a. Surface:

1.) Is there any surface water body on or in the immediate vicinity of the site (including year round and seasonal streams, saltwater, lakes, ponds, wetlands)?

An unnamed stream originates from a wetland located south of Machias Road and east of Williams Road near its intersection with Machias Cutoff. After its initial flow in this wetland, the stream flows east in a cross-culvert on Williams Road approximately 180 feet south of the intersection. After crossing Williams Road, it flows north in a culvert and open channel to a cross culvert on Machias Cutoff. At this culvert, the stream crosses Machias Cutoff to the northeast in a diagonally crossing 170-foot culvert that outfalls to a ditched open channel. The stream then flows through a 45-foot driveway culvert prior to continuing its flow in an open channel for 110 feet before crossing Machias Cutoff again, where it flows to the southeast in an 85-foot long culvert. The stream outfalls to an open channel and then flows to the Pilchuck River valley floor, and eventually flows to the Pilchuck River.

Five wetlands are located in the project area. Three wetlands are located south of Machias Cutoff and two are located north of Machias Cutoff. (See Figure 5: Critical Areas)

The project lies approximately 1 mile southeast from the south shore of Lake Stevens.

2.) Will the project require any work over, in, or adjacent to (within 200 feet) the described waters?

Project activity would require work within 200 feet of wetlands and an unnamed stream. Roadway shoulder widening and turn lane construction would intrude into and require fill in a wetland located north of Machias Cutoff. Project activity would occur in proximity to the unnamed stream and is expected to require lengthening the cross-culvert located on Machias Cutoff immediately west of the intersection.
3.) Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material.

The project proposes no dredge activity in wetlands or surface waters. Roadway embankment fill would extend into Wetland C, which is located north of the Machias Cutoff roadway and west of Williams Road. It is anticipated that one of the culvert crossings could potentially require extension. All other culvert crossings would not be affected by the project.

4.) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and approximate quantities if known.

Culvert extension work may require temporary diversion of stream flow to install the additional culvert piping.

5) Does the proposal lie within a 100-year flood plain? If so, note location on the site plan.

No.

6) Does the proposal involve any discharges of waste materials to surface waters?

No. The project proposes no discharges of waste materials to surface waters.

b. Ground:

1) Will ground water be withdrawn, or will water be discharged to ground water?

The project proposes no withdrawals of ground water. If areas of excavation require dewatering during construction, pumped water would be treated with application of sedimentation control Best Management Practices (BMPS) prior to discharge to existing stormwater conveyance systems.

2) Describe waste material that will be discharged into the ground from septic tanks or other sources.

None.

c. Water Runoff (including storm water):

1) Describe the source of runoff (including storm water) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters?

Additional stormwater runoff would be generated from the intersection improvement. Impervious surface area would increase 9,962 square feet
in the project area. Existing drainage patterns would be retained that convey stormwater runoff east of the project area.

2) Could waste materials enter ground or surface waters? If so, generally describe.

There would be no waste materials on the site to enter ground or surface waters.

d. Proposed measures to reduce or control surface, ground, and runoff water impacts, if any:

Construction would occur during the dry season. A Temporary Erosion and Sedimentation Control Plan would be included in construction contract documents. During and after construction, BMPs including, but not limited to, silt fences, mulching, check dams, and filter berms would be used to control and minimize adverse impacts in the event that there is a precipitation event that results in surface runoff. Bare soil areas exposed by construction activities would be reseeded, covered with mulch and/or planted to control erosion. The project would apply for National Pollutant Discharge Elimination System (NPDES)/Construction Stormwater General Permit coverage and would prepare a Stormwater Pollution Prevention Plan as part of the NPDES permit coverage.

4. Plants

a. Bold types of vegetation found on the site:
 XX deciduous tree: alder, maple, vine maple, aspen, other willow
 XX evergreen tree: Douglas-fir, cedar, pine, other ___ hemlock ___
 XX shrubs:
 XX grass:
 ___ pasture:
 ___ wet soil plants: cattail, buttercup, bulrush
 ___ water plants: water lily, eelgrass, milfoil, other ______

b. What kind and amount of vegetation will be removed or altered?

Site grades would be modified to accommodate intersection improvement construction and stormwater facility installation. Grassy and graveled areas comprise the majority of the area proposed for construction. Minor amounts of clearing would be associated with removing scattered trees and shrubs that would obstruct construction.

c. List threatened or endangered species known to be on or near the site.

No threatened or endangered plant species are known to be on or near the site.

d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation on the site.

Clearing would be limited to only those areas that would obstruct intersection improvement construction. Trimming of trees and shrubs may occur where needed to remove obstructions to equipment access. Other vegetation clearing is proposed to improve sight distance and
would occur in the sight distance triangle areas. (See Figure 4: Sight Triangle Exhibit) Where required, bare soil areas would be re-seeded after final site grading is established. Where feasible, native trees and shrubs would be planted to compensate for unavoidable clearing impacts in stream buffer areas. Any buffer areas impacted by permanent clearing maintenance for sight distance will be mitigated elsewhere.

5. Animals

a. Circle any birds and animals which have been observed on or near the site or are known to be on or near the site: **in bold** birds: hawks, heron, eagle, songbirds, other:
mammals: deer, bear, elk, beaver, other:
fish: bass, salmon, trout, herring, shellfish, other: downstream from the project site

b. List any threatened or endangered species known to be on or near the site.

No threatened or endangered species are known to be on or near the site. Endangered Species Act listed threatened salmonid species use the Pilchuck River, approximately 0.25 mile southeast of the Machias Cutoff and Williams Road intersection.

c. Is the site part of a migration route? If so, explain.

Yes. The site is within the Pacific Flyway. Migratory waterfowl can be observed in the greater project vicinity, particularly at Lake Stevens and in the Pilchuck River valley.

d. Proposed measures to preserve or enhance wildlife, if any:

Project construction would occur primarily during the summer months when rainfall is minimal. This would minimize erosion and prevent sedimentation of surface waters that could adversely affect in-stream fish. Bare soil areas would be revegetated and planted after site grades have been established. Other timing restrictions would also be applied if in-stream activities become integrated into project construction, and would coincide with “fish windows” for salmonids. Additional timing restrictions could also be applied if it is determined that the project could adversely affect eagles and other bird species in the project area.

6. Energy and Natural Resources

a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project’s energy needs? Describe whether it will be used for heating, manufacturing, etc.

No energy is needed to meet the completed project’s needs. However, during construction minor amounts of fuel would be used by construction equipment during site grading and paving project activity.

b. Would your project affect the potential use of solar energy by adjacent properties?

No.
c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any:

N/A.

7. Environmental Health

a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste, that could occur as a result of this proposal?

No potentially hazardous materials have been identified at or in proximity to the intersection project site. Fuel spills and other construction-equipment fluids could potentially occur during construction.

1) Describe special emergency services that might be required.

N/A.

2) Proposed measures to reduce or control environmental health hazards, if any:

An Environmental Site Assessment would be prepared prior to construction to address any potential soil contamination or other hazardous materials on the site. If any hazardous materials are discovered during project construction, they would be handled and disposed of according to adopted Washington State and local codes governing their disposal. Vehicle fueling and handling of other potential contaminants during construction would occur away from the stream and wetlands.

b. Noise

1) What types of noise exist in the area which may affect your project (for example: traffic, equipment, operation, aircraft, other)?

None.

2) What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site.

During construction (short-term) there would be increased noise levels generated by heavy equipment. These noise levels are likely to exceed existing background noise levels associated with surrounding residential properties. The completed project would not contribute to increased noise levels.

3) Proposed measures to reduce or control noise impacts, if any:

Construction would be normally limited to hours established by Snohomish County permit conditions. Equipment would meet OSHA and other applicable noise standards.
8. Land and Shoreline Use

a. What is the current use of the site and adjacent properties?

The project site is an existing Snohomish County roadway located in a rural residential area that provides a transition from more densely populated residential areas to the west and less intensive rural residential and agricultural areas to the east. In the immediate project area, residential neighborhoods are located upslope to the north of the project while areas more rural in character are located downslope to the south and east of the project.

b. Has the site been used for agriculture? If so, describe.

The site proposed for construction has not been used for agriculture. Agricultural areas are located 0.25 miles east of the project site in the Pilchuck River valley.

c. Describe any structures on the site.

The site has no residential or other building structures.

d. Will any structures be demolished? If so, what?

No structures would be demolished during project construction.

e. What is the current zoning classification of the site?

The residential areas adjacent to the roadway are zoned Rural Residential Five Acres (R-5). This area lies east of the Lake Stevens Urban Growth Area (UGA). Residential density increases west of the UGA, which is zoned R-7,200.

f. What is the current comprehensive plan designation of the site?

The project area lies east of the Lake Stevens Urban Growth Area (UGA). The Snohomish County Comprehensive Plan designates the project area as Rural Residential 5 (1DU/5 Acres Basic) with a Rural Urban Transition Area Overlay. This overlay designation is intended to reserve a potential supply of land for future addition into a UGA. Areas within the Lake Stevens UGA are designated Urban Low Density (4-6 du/acre).

g. If applicable, what is the current shoreline master program designation of the site?

Not Applicable.

h. Has any part of the site been classified as an "environmentally sensitive" area?

Streams, wetlands, and their buffers, are located adjacent to the roadway and are regulated by Snohomish County as critical areas.
1. Approximately how many people would reside or work in the completed project?

None.

j. Approximately how many people would the completed project displace?

It is anticipated that the project would not displace residents. The project would be located primarily within existing Snohomish County right-of-way. However, the project would need to acquire linear strips of property in portions of the project area in order to accommodate turning lane and shoulder widening construction. Additional land area would be needed for stormwater facility siting, conveyance and treatment.

k. Proposed measures to avoid or reduce displacement impacts:

Right-of-way acquisition of private property is likely necessary to construct the proposed intersection improvements and stormwater facility. It is anticipated that the project would not displace residents. A complete and detailed set of relocation and right-of-way plans would be developed. Chapter 8.25 and 8.26 of the Revised Code of Washington would govern right-of-way acquisition proceedings. These laws ensure fair and equitable treatment of those displaced. In addition, right-of-way purchases would be in accordance with Civil Rights Act Title VI legislation and the federal Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 as amended (42 U.S.C.) These laws would provide payment for reasonable and necessary costs to relocate persons displaced by the project and ensure prompt and fair relocation payments and requires agency review of aggrieved parties. Acquisition proceedings include appraisal, determination of just compensation, presentation of an offer and compensating the individual. Acquisition proceedings within the project vicinity would not be initiated until the environmental review process has been completed.

l. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any:

The project is consistent with the Transportation Element of the adopted Snohomish County Growth Management Act Comprehensive Plan. The plan designates both Machias Cutoff and Williams Road as Rural Arterials with Urban Traffic, primarily because both roadways provide an opportunity for urban-oriented traffic to feed rural arterials with urban traffic from a UGA. The proposed intersection improvement is designated as a Traffic Safety/Intersection project in the Six-Year Snohomish County Transportation Improvement Program (TIP # D.01.34).
9. Housing
a. Approximately how many units would be provided, if any? Indicate whether high, middle or low-income housing.

None.

b. Approximately how many units, if any, would be eliminated? Indicate whether high, middle, or low-income housing.

None.

c. Proposed measures to reduce or control housing impacts, if any:

None.

10. Aesthetics
a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed?

The project proposes no aboveground structures.

b. What view in the immediate vicinity would be altered or obstructed?

Views to and from the roadway would be altered slightly with the addition of a left turn lane, retaining walls, stormwater facilities, and sight triangle clearing to improve sight distance.

c. Proposed measures to reduce or control aesthetic impacts, if any:

Roadside plantings would be installed where feasible to reduce aesthetic impacts. A planting plan would be developed as part of the final design phase of the project.

11. Light and Glare
a. What type of light or glare will the proposal produce? What time of day would it mainly occur?

None.

b. Could light or glare from the finished project be a safety hazard or interfere with views?

No.

c. What existing off-site sources of light or glare may affect your proposal?

None.

d. Proposed measures to reduce or control light and glare impacts, if any:

None.
12. Recreation

a. What designated and informal recreational opportunities are in the immediate vicinity?

Snohomish County Parks and Recreation provides recreational opportunities in the project vicinity. The Centennial Trail crosses Machias Cutoff approximately 1,500 feet east of the intersection. The Machias Station Trailhead Park for the Centennial Trail is located approximately one mile east of the Machias Cutoff and Williams Road intersection. The Centennial Trail currently provides 17 miles of completed trail, and extends from the city of Snohomish to Arlington. When finished it will extend to the Skagit County border.

b. Would the proposed project displace any existing recreational uses? If so, describe.

No.

c. Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project/applicant, if any:

No measures are proposed other than keeping the roadway open during construction so that recreational access is maintained for recreational visitors.

13. Historic and Cultural Preservation

a. Are there any places or objects listed on, or proposed for, national, state, or local preservation registers known to be on or next to this site?

There are no recorded archaeological sites, or known places or objects listed on or proposed for national, state, or local registers on or next to the site.

b. Generally describe any landmarks or evidence of historic, archaeological, scientific, or cultural importance known to be on or next to the site.

As noted above, there are no recorded archaeological or historical sites located in the project vicinity.

c. Proposed measure to reduce or control impacts, if any.

If, during construction, cultural resources are found, the Washington Department of Archaeology and Historic Preservation (DAHP) would be contacted. In consultation with DAHP and other parties, a professional archaeologist would be brought in to record site conditions and conduct a systematic collection of artifacts if necessary before proceeding with the work. Continuation of construction work would conform to applicable regulations.
14. Transportation

a. Identify public streets and highways serving the site, and describe proposed access to the existing street system.

The project site roadways have various roadway designations. The portion of Machias Cutoff west of the Williams Road intersection is designated as a rural minor collector arterial, while the portion of Machias Cutoff east of Williams Road is a rural major collector arterial. Williams Road is a rural major collector arterial.

It has been determined that due to sight distance deficiencies and a left-turn warrant analysis that this intersection merits the installation of a left-turn lane (left-turn pocket lane) on Machias Cutoff.

These two roadways intersect in a ‘T’ configuration at an angle of 90 degrees. Each road has one through lane in each direction, and each road has gravel shoulders varying in width from 2 feet to 6 feet. Williams Road is stop-controlled at the intersection, while Machias Cutoff is uncontrolled. The posted speed limit on both roads is 35 mph. There are no sidewalks or pedestrian facilities in the project vicinity. The Centennial Trail crosses Machias Cutoff approximately 1,500 feet east of the intersection.

Sight distance has been identified as a problem at this intersection, for motorists westbound on Machias Cutoff turning left onto Williams Road and for motorists northbound on Williams Road turning left onto Machias Cutoff. In both cases the clear sight triangles for a motorist waiting to turn left crosses outside of the existing Snohomish County roadway right-of-way. The existing topography within the sight triangle north and west of Williams Road is a shallow ditch with low grassy vegetation in proximity to a wetland with trees and shrubs. An existing guardrail on the south side of Machias Cutoff is close to, but not within the sight triangle. The existing topography in the sight triangle south and east of Williams Road rises up in elevation and is covered with denser vegetation, blocking the clear sight triangle (See Sight Triangle Exhibit in Figure 4).

The sight distance deficiency is exacerbated by the roadway geometric configuration. The profile of Machias Cutoff slopes down from west-to-east at an approximate 7 percent grade through the project site, and the road is superelevated through the curves west and east of Williams Road.

b. Is site currently served by public transit? If not, what is the approximate distance to the nearest transit stop?

The Machias Cutoff and Williams Road intersection is not served by public transit. The closest service is provided by Community Transit (CT) bus routes that operate on 20th Street SE, approximately 3 miles...
west of the project site. CT Local Route 280 and CT Commuter Route 425 stop at the intersection of 91st Avenue SE and 20th Street SE. Commuter parking is provided at a Park and Ride facility located on 20th Street SE, east of its intersection with 99th Avenue SE.

c. How many parking spaces would the completed project have? How many would the project eliminate?

The project would not eliminate parking spaces.

d. Will the proposal require any new roads or streets, or improvements to existing roads or streets, not including driveways?

No.

e. Will the project use (or occur in the immediate vicinity of) water, rail, or air transportation?

The project site does not lie in proximity to water, rail, or air transportation.

f. How many vehicular trips per day would be generated by the completed project? If known, indicate when peak volumes would occur.

The project would not generate additional vehicular trips. Based on June 2009 traffic counts, the project area roadways currently convey the following traffic volumes:

- 3,928 trips on Williams Road.
- 3,374 for the Machias Cutoff roadway segment west of Williams Road, and 6,427 trips east of Williams Road.

The Traffic Operations Group of Snohomish County Public Works has determined that these traffic counts support the warrant for a left-turn lane on Machias Cutoff.

g. Proposed measures to reduce or control transportation impacts, if any:

The roadway design would be consistent with adopted Snohomish County Engineering Design and Development Standards and other applicable standards.

15. Public Services

a. Would the project result in an increased need for public services (for example: fire protection, police protection, health care, schools, other)?

No. The purpose of the project is to improve pedestrian safety in the project area. The walkway would provide a safer environment for pedestrian activity.
b. Proposed measures to reduce or control direct impacts on public services, if any.

The roadway would remain open to traffic during construction, although traffic may potentially be subject to one-lane closures during active construction to avoid conflicts with construction that could pose a safety hazard. There could be potential short-term closures of the roadway.

16. Utilities

a. Circle utilities currently available at the site [in bold]: electricity, natural gas, water, refuse service, telephone, sanitary sewer, septic system, cable.

Several aerial and underground utilities have been identified in the project area. Detailed information would be requested from each utility as the design is finalized. The design would be coordinated to minimize construction related service disruptions and utility relocations.

b. Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity which might be needed.

The project proposes no utilities. Existing electrical, phone and cable service overhead utilities located on utility poles and underground utilities may need to be relocated to accommodate the project design.

C. SIGNATURE

The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision.

Prepared by: [Signature]

Date Submitted: December 19, 2009
DISTRIBUTION:

Federal Agencies:
 National Marine Fisheries Service
 United States Fish and Wildlife Service
 Army Corps of Engineers

Tribes:
 Tulalip Tribes

State Agencies:
 Washington State Department of Archaeology and Historic Preservation
 Washington State Department of Ecology (Environmental Review Section)
 Washington State Department of Fish and Wildlife

Cities:
 City of Lake Stevens

County Departments:
 Parks and Recreation
 Planning and Development Services
 Public Works – Road Maintenance Division
 Public Works – Surface Water Management Division

Other Agencies:
 Lake Stevens Fire District #08
 Snohomish School District #201
 Snohomish Health District

Utilities
 Snohomish County PUD No. 1
 Comcast
 Puget Sound Energy
 Verizon

Residents and landowners within 1000 feet of project or greater

Media:
 The Herald
Figure 1. Project Vicinity
Figure 3: TYPICAL ROADWAY SECTIONS

SEC. 20, T.30 N., R.05 E., W.M.

EXISTING SECTION
N.T.S.
Station 56+00

PROPOSED SECTION
N.T.S.
Station 56+00

EXISTING SECTION
N.T.S.
Station 59+00

PROPOSED SECTION
N.T.S.
Station 59+00

Machias Cutoff & Williams Road Intersection Improvement
UPI 09-0009-1, RC 1561
Figure 5: CRITICAL AREAS

SEC. 20, T.30 N., R.05 E., W.M.

Machias Cutoff & Williams Road Intersection Improvement
UPI 09-0009-1, RC 1561