Purpose of Checklist:
Governmental agencies use this checklist to help determine whether the environmental impacts of your proposal are significant. This information is also helpful to determine if available avoidance, minimization or compensatory mitigation measures will address the probable significant impacts or if an environmental impact statement will be prepared to further analyze the proposal.

SUMMARY

A. BACKGROUND

1. Name of proposed project:
 Sauk Prairie Road Culvert Replacement

2. Name of applicant:
 Snohomish County Public Works
 Engineering Services Division

3. Address and phone number of applicant and contact person:
 3000 Rockefeller Avenue, M/S 607
 Everett, WA 98201

 Contact Person: Julie Highton, Senior Environmental Planner
 Transportation and Environmental Services Division
 (425) 262-2341 or
 julie.highton@snaco.org

4. Date checklist prepared:
 April 19, 2017

5. Agency requesting checklist:
 Snohomish County Public Works
 Engineering Services Division
6. Proposed timing or schedule (including phasing, if applicable):
 The project is scheduled to be constructed in Summer, 2018, and the duration is expected to be 8 to 12 weeks.

7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? If yes, explain.
 No other future additions, expansion, or further activities have been identified at this time.

8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal.
 Archaeological Screening Memo, May 13, 2016 – Snohomish County
 30% Design Report, December 2016 – Snohomish County
 Geotechnical Memorandum, September 16, 2015 – Snohomish County
 Drainage Report, December 2016 – Snohomish County

9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? If yes, explain.
 The Skagit River System Co-operative is preparing a design for a realigned stream channel that will connect to the outlet of the County’s new culvert. This will allow flow coming from the culvert to be channeled northwards for approximately 1,000 feet to connect with an existing channel that flows towards the Sauk River.

10. List any government approvals or permits that will be needed for your proposal, if known.

 The following permits and approvals may be required:

<table>
<thead>
<tr>
<th>Permit/Approval</th>
<th>Required from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 404 Authorization: Nationwide</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>Permit</td>
<td></td>
</tr>
<tr>
<td>Section 7 Endangered Species Act</td>
<td>NOAA Fisheries and U.S. Fish and Wildlife Service Consultation</td>
</tr>
<tr>
<td>Section 106 National Historic Preservation Act</td>
<td>Federal Lead Agency (Corps of Engineers)</td>
</tr>
<tr>
<td>Section 401 Water Quality and CZM</td>
<td>Washington State Department of Ecology</td>
</tr>
<tr>
<td>Certification</td>
<td></td>
</tr>
</tbody>
</table>
11. Give a brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain aspects of your proposal. You do not need to repeat those answers on this page. (Lead agencies may modify this form to include additional specific information on project description.)

The 800-foot long project site is located on Sauk Prairie Road, approximately 3.2 miles northeast of the town of Darrington (see Figure 1, Vicinity Map). Under existing conditions, some flow from Everett Creek south of the roadway passes through an existing 49-inch wide x 33-inch high metal culvert, but during periods of heavy precipitation it floods the roadway at its lowest point. To prevent future flooding, the project proposes to install a larger culvert at this low point, which is approximately 145 feet to the west of the existing culvert. The new culvert will be a 108-inch wide x 48-inch high x 45-foot long precast concrete box (see Figure 2, Study Area). The inlet to the culvert will be at Elevation 463.55' and the outlet at Elevation 462.83'.

Due to the high water table and poor quality soils (for supporting a structure) extending to a depth of 8 feet, excavation for the culvert will extend through the limited amount of existing embankment fill, and through the alluvial sand and silt to the bearing material. This will require dewatering (a combination of shoring and pumping) prior to placement of the drainage fabric, geogrid and railroad ballast. To provide a strong, structural base for the culvert, railroad ballast wrapped in non-woven geotextile will be topped by biaxial geogrid for a depth of four feet. This will be topped with a layer of crushed surfacing top course on which the culvert will be placed. Gravel backfill will be placed between the sides of the culvert and the excavation trench.

As the new culvert will sit approximately 2-3/4 feet higher than the existing roadway, Sauk Prairie Road will be raised up to 3 feet higher over an approximate 600-foot section of the roadway. The roadway will be underlain with crushed surfacing base course, and topped with a hot asphalt mix. The finished roadway section will have two 11-foot travel lanes, two 1-foot gravel shoulders, and an additional two feet of paved shoulder where guardrails are installed to increase the safety of drivers traveling the roadway. Guardrails will be installed on the north side of the roadway between STA 17+00 and STA 18+20, and on the south side between STA 17+00 and STA 21+20 at the eastern end of the project area. The roadway will have 4:1 side slopes, except where the guardrail is installed; in this area the slopes will be 2:1. Where the road prism will
extend 2 to 3 feet into the pond, impacts will be minimized by constructing a soil wrapped, “reinforced slope” (0.5:1) wall, 6 to 8 feet high, which will then be either hydroseeded or planted with small shrubs.

12. Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit applications related to this checklist.

The project site’s location on Sauk Prairie Road northeast of Darrington is approximately 0.3 miles northeast of the intersection with Crawford Loop Road, in SE ¼, NE ¼, Section 8, Township 32N, Range 10E, W.M.

B. ENVIRONMENTAL ELEMENTS

1. Earth

a. General description of the site (circle one): flat, rolling, hilly, steep slopes, mountainous, other.

Sauk Prairie Road itself is fairly flat, with the fields on the north side of the roadway sloping slightly to the north. There is a steep slope to the south of the project area.

b. What is the steepest slope on the site (approximate percent slope)?

The vegetated bank of a roadside pond is the steepest slope on site at approximately six percent.

c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)? If you know the classification of agricultural soils, specify them and note any agricultural land of long-term commercial significance and whether the proposal results in removing any of these soils.

The native soils in the project area have been mapped by the Natural Resources Conservation Service.

Sulsavar gravelly loam, 0 to 8 percent slopes
This soil underlies the roadway. This is a very deep, well-drained soil found on terraces and alluvial fans. It is formed in alluvium and volcanic ash.

Kitsap silt loam, 0 to 8 percent slopes
This soil underlies the farm fields to the north of the roadway. It is a very deep, moderately well-drained soil found on terraces. It formed in lacustrine sediment.
Pastik silt loam, 25 to 50 percent slopes
This soil is found on the steep slopes south of the roadway. It is a very deep, moderately well-drained soil found on terraces. It formed in lake sediment and volcanic ash.

d. Are there surface indications or history of unstable soils in the immediate vicinity? If so, describe.
 The site is located within the Glacier Peak lahar zone. Steep slopes are mapped to the south of the roadway.

e. Describe the purpose, type, total area, and approximate quantities and total affected area of any filling, excavation and grading proposed. Indicate source of fill.
 The purpose of the excavation and fill is to install a new culvert and raise the roadway. The project proposes approximately 95 cubic yards of excavation over a 6,175 square foot area.

 The proposed fill area is 21,207 square feet and the amount of fill is 2,119 cubic yards of material, categorized as follows:
 - 1,162 cubic yards of gravel borrow
 - 332 cubic yards of crushed surfacing base course
 - 69 cubic yards of crushed surfacing top course
 - 420 cubic yards of topsoil
 - 121 cubic yards of bark or woodchip mulch
 - 15 cubic yards of streambed gravel for culvert

 In compliance with Snohomish County grading regulations, fill material will come from a County-approved source.

f. Could erosion occur as a result of clearing, construction, or use? If so, generally describe.
 Minor amounts of erosion could occur during excavation of soils during construction and the raising of the roadway.

g. About what percent of the site will be covered with impervious surfaces after project construction (for example, asphalt or buildings)?
 Approximately 40% of the site will be covered with impervious surfaces after construction.

h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any:
 No significant erosion impacts are expected. Temporary Erosion and Sedimentation Control Best Management Practices (BMPs) would be used to minimize impacts from erosion.
2. Air

a. What types of emissions to the air would result from the proposal during construction, operation, and maintenance when the project is completed? If any, generally describe and give approximate quantities if known.

Construction equipment, construction-related activities, and vehicles carrying workers and equipment to and from the site would result in minor, temporary increases in emissions and dust. There would be no increase in emissions once construction is complete. During grading, dust levels may increase temporarily.

b. Are there any off-site sources of emissions or odor that may affect your proposal? If so, generally describe.

No offsite sources of emissions would affect construction.

c. Proposed measures to reduce or control emissions or other impacts to air, if any.

During construction, equipment emissions would not exceed state and national air quality standards. The project would use only equipment and trucks in optimal operational condition. Dust control measures would be implemented to minimize airborne dust.

3. Water

a. Surface Water

1) Is there any surface water body on or in the immediate vicinity of the site (including year round and seasonal streams, saltwater, lakes, ponds, wetlands)? If yes, describe type and provide names. If appropriate, state what stream or river it flows into.

Two streams and three wetlands (Wetlands A, B & C) are located within or adjacent to the project limits.

Everett Creek and Thompson Creek are Type F streams that originate in the steep slope south of the project. The original channels for the streams have been altered over the years by landowners whose properties the streams flow through. A culvert at the eastern project limits carries Thompson Creek under Sauk Prairie Road. The stream is routed around a single-family residence before flowing west in a shallow ditch adjacent to the roadway. Sediment has accumulated in the channel, causing the stream to braid over the bank and flood the roadway during periods of heavy precipitation.

Everett Creek is located further to the west. It originally flowed east along the toe of the slope, where it flowed into a manmade pond associated with Wetland A. Several years ago, a property owner redirected the flow toward the road by excavating and diverting the flow into a straight ditch. Sediment carried by Everett Creek has further
altered the flow of the stream by blocking the excavated channel near the toe of the steep slope, causing the stream to braid into small channels that follow the topography towards the west side of the pond. However, during periods of heavy precipitation, the force of the stream’s flow carries it over the sediment blockage and down to the roadway. The road ditch is not able to contain the flow, causing the stream to flood the road at its lowest point at STA 17+00. Some of the stream flow reaches the pond at the southeast end of the project. Water from the pond outlets through the existing culvert to the north side of the road.

The confluence of the pond’s outfall and Thompson Creek occurs within a few feet of the outlet of the culvert. Flow beyond the confluence is known as Everett Creek. It tended to flow northward in an elevated ditch channel until it reconnected to the original channel approximately 1,000 feet downstream, but now a section of the channel has been blocked by sediment. The County has had discussions with the Skagit River System Cooperative (SRSC) regarding the realignment of Everett Creek downstream of the outlet of the culvert. The SRSC is proposing to design and construct the stream re-alignment channel between the County right of way line and the more defined channel further north. The County’s new culvert will connect to the SRSC channel.

Wetlands exist on both sides of the road and have been labeled A, B and C (see Figure 3, Wetlands and Streams). The wetlands receive their hydrology from the streams, slope runoff and high water table. Wetlands A and C are emergent depressional wetlands and straddle the majority of the roadway within the project area. Wetland A is located between the road and the steep slope to the south, and is dominated by undisturbed reed canarygrass. The pond associated with Wetland A is near the eastern edge of the project limits. It is approximately one acre in size and was excavated over 50 years ago. The pond is fed by creeks coming off the adjacent slope, and ranges in depth from 6 feet to 10 feet during the wetter months. The pond provides habitat for amphibians, as well as potential habitat for juvenile salmonids and other fish.

Wetland C is located on the north side of the road and extends for a significant distance to the north and northwest. The portion of Wetland C that is located within the project limits is dominated by a reed canary grass pasture that has historically been mowed. Wetter areas adjacent to the mowed pasture remain in undisturbed native wetland vegetation. Wetland B, a “slope” wetland, is adjacent to the eastern project limits on the south side of the road.

2) Will the project require any work over, in, or adjacent to (within 200 feet) the described waters? If yes, please describe and attach available plans.

Yes, the existing culvert removal, new culvert installation, and the raising and slight widening of the road will impact the streams, Wetland A and its pond, Wetland C, and their buffers. Flow from Thompson Creek on the north side of Sauk Prairie will be
realigned 8 to 10 feet further north to its original channel when the roadway is raised and 4:1 slopes constructed. Wetlands A and C will be impacted when the roadway is raised and 2:1 and 4:1 slopes constructed. Everett Creek will be beneficially impacted as the new culvert will allow the stream to pass under the roadway. The pond will be impacted as the new roadway and its reinforced slope wall will extend approximately 2 to 3 feet into the pond, and the culvert conveying pond water to the north will be removed.

3) Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material.

- Wetland A impacts adjacent to road are approx. = 2,576 square feet (0.06 acres)
- Wetland C impacts adjacent to road are approx. = 1,535 square feet (0.03 acres)
 Total: 4,111 square feet (0.09 acres)

- Wetland A buffer impacts adjacent to road are = 3,838 square feet (0.09 acres)
- Wetland C buffer impacts adjacent to road are = 3,898 square feet (0.09 acres)
 Total: 7,736 square feet (0.18 acres)

There will be temporary impacts of 1,629 square feet (0.4 acres) to Thompson Creek when it is moved 10 feet further north.

4) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and approximate quantities if known.

Yes, the pond must be isolated in order to construct the reinforced slope wall. It may be necessary to pump the water away from the work area.

5) Does the proposal lie within a 100-year floodplain? If so, note location on the site plan.

No.

6) Does the proposal involve any discharges of waste materials to surface waters? If so, describe the type of waste and anticipated volume of discharge.

No.

b. Ground Water:

1) Will groundwater be withdrawn from a well for drinking water or other purposes? If so, give a general description of the well, proposed uses and approximate quantities withdrawn from the well. Will water be discharged to groundwater? Give general description, purpose, and approximate quantities if known.

No.
2) Describe waste material that will be discharged into the ground from septic tanks or other sources, if any (for example: Domestic sewage; industrial, containing the following chemicals; agricultural; etc.). Describe the general size of the system, the number of such systems, the number of houses to be served (if applicable), or the number of animals or humans the system(s) are expected to serve.
N/A

c. Water Runoff (including storm water)

2) Describe the source of runoff (including stormwater) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters? If so, describe.
Stormwater runoff and surface runoff currently sheet flow in a south to north direction, and is not anticipated to change. The raised roadway will be at Elevation 468.6 feet at the centerline to keep travel lanes free of water for the 25-year mean return interval storm flow. Stormwater will flow to both sides of the road from the centerline. It will infiltrate into the grassed areas adjacent to the road, which are proposed to be improved with 1 foot of top soil, bark or wood mulch.

3) Could waste materials enter ground or surface waters? If so, generally describe.
No.

4) Does the proposal alter or otherwise affect drainage patterns in the vicinity of the site? If so, describe.
Drainage patterns, where water flows from south to north, will not be significantly different from those currently existing.

b. Proposed measures to reduce or control surface, ground, and runoff water, and drainage pattern impacts, if any.

No significant adverse impacts are anticipated. Future flooding will be avoided as the new, larger culvert will carry surface runoff under the road.

All project activity would be subject to Best Management Practices and would comply with the provisions of all applicable permits. BMPs may include, but are not limited to the following:
- Protective covering such as clear plastic sheeting would be placed over exposed soil areas to prevent sediments and other contaminants from entering ditches, streams, and wetlands.
- A temporary erosion and sediment control plan would be implemented during construction.
- Erosion and sedimentation control measures such as silt fencing would be routinely inspected, maintained and repaired. Damaged or inadequate erosion and sedimentation control measures would be corrected quickly.
• Any bare soil that may result from project activity would be reseeded with an appropriate erosion control seed mix following construction.

It is proposed to mitigate wetland and buffer impacts by purchasing credits from the Skagit Environmental Bank. Because the project is located outside of the bank’s service area, this proposal will be reviewed by the U.S. Army Corps of Engineers’ Interagency Review Team and their approval obtained to use the bank.

4. Plants

a. List the types of vegetation found on or in close proximity to the site:
 Deciduous tree: red alder, big leaf maple
 Evergreen tree: Douglas fir, western red cedar
 Shrubs: common snowberry
 Grasses: reed canarygrass
 Pasture: consisting of various grasses
 Crop or grain: N/A
 Orchards, vineyards or other permanent crops: N/A
 Wet soil plants: common cattail, creeping buttercup, soft rush, sedges
 Water plants: yellow pond-lily

b. What kind and amount of vegetation will be removed or altered?
 The areas where vegetation will be removed are adjacent to both sides of the roadway. The northern part of Wetland A and the pond south of the roadway are dominated by reed canarygrass, while the southern part of Wetland C north of the roadway is also reed canarygrass, but is regularly mowed.

c. List threatened and endangered plant species known to be on or near the site.
 None are known to be on or adjacent to the project site.

d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation of the site, if any:
 Shrubs will be planted on the reinforced slope wall adjacent to the pond.

e. List all noxious weeds and invasive species known to be on or near the site.
 Reed canarygrass is found on both sides of Sauk Prairie Road.

5. Animals

a. List any birds and other animals which have been observed on or near the site or are known to be on or near the site. Examples include:
 birds: hawk, eagle, songbird, woodpecker, wood duck
 mammals: deer, opossum, raccoon, coyote, small rodents
 fish: salmonids — coho and cutthroat trout were identified in Everett Creek and assumed to be present in the pond.
b. List any threatened and endangered wildlife species known to be on or near the site. WDFW’s SalmonScape incorrectly identifies Everett Creek further to the north. Everett Creek flows into the pond located approximately 0.4 miles to the south. Everett Creek and Thompson Creek are modeled as presence for fall Chinook salmon, winter steelhead, and odd-year pink. Coho are documented as present in both streams.

As of April, 2017, the nearest critical habitat for marbled murrelets is documented nearly 3 miles away. The nearest spotted owl critical habitat is more than 1 mile from the project site, while an eagles’ communal roost is nearly 1 mile away.

c. Is the site part of a migration route? If so, explain.
 The site is lies within the Pacific Flyway for migratory birds of all types. The flyway stretches between Alaska and South America. All migratory birds are protected by the Migratory Bird Treaty Act administered by the US Fish and Wildlife. Bald eagles are protected by the Bald and Golden Eagle Protection Act also administered by the USFWS.

d. Proposed measures to preserve or enhance wildlife, if any:
 If federally threatened and endangered species are found, all work will conform to the requirements of the Endangered Species Act administered by the US Fish and Wildlife Service and National Marine Fisheries Service. Where state listed species or Priority Habitats and Species (PHS) are found, the Washington Department of Fish and Wildlife Priority Habitats and Species recommendations will be followed, when appropriate. The most current PHS list can be found at: http://wdfw.wa.gov/conservation/phs/list/

e. List any invasive animal species known to be on or near the site.
 There are no known invasive animal species on or near the project site.

6. Energy and Natural Resources

 a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project’s energy needs? Describe whether it will be used for heating, manufacturing, etc.
 The project is a roadway and drainage improvement project, and does not require energy sources when completed.

b. Would your project affect the potential use of solar energy by adjacent properties? If so, generally describe.
 No.

c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any:
 N/A
7. Environmental Health

a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste that could occur as a result of this proposal? If so, describe.

No potentially hazardous materials have been identified at or in proximity to the project site. Fuel spills and other construction equipment fluids could potentially occur during construction.

1) Describe any known or possible contamination at the site from present or past uses.
 There are no known or possible sources of contamination at the site from present or past uses. The project is located in a rural area.

2) Describe existing hazardous chemicals/conditions that might affect project development and design. This includes underground hazardous liquid and gas transmission pipelines located within the project area and in the vicinity.
 There are no known pipelines or existing hazardous chemicals or conditions within the project area or vicinity which are expected to affect the project.

3) Describe any toxic or hazardous chemicals that might be stored, used or produced during the project’s development or construction, or at any time during the operating life of the project.
 No toxic or hazardous chemicals would be stored, used, or produced during construction other than construction equipment fuel and lubricants required for equipment operation.

4) Describe special emergency services that might be required.
 Emergency response vehicles may be required in the event of a construction accident.
 The site could be accessed by either Crawford Loop Road or Sauk Prairie Road. The completed project would not require any additional emergency services.

5) Proposed measures to reduce or control environmental health hazards, if any:
 Spill control and cleanup materials would be staged on site. The crew leader or other designated person would have a spill control plan and be trained in spill prevention and cleanup. All equipment would be well maintained and in good repair to prevent the loss of any petroleum products. Refueling would generally occur a minimum of 150 feet from the site.

b. Noise

1) What types of noise exist in the area which may affect your project (for example: traffic, equipment, operation, aircraft, other)?
 No noise sources in the area would affect the project.
2) What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site.

 During construction (short-term), there would be increased noise levels generated by heavy equipment. These noise levels may exceed existing background noise levels associated with the rural land uses in the project area, and would occur during daylight hours, Monday to Friday. However, upon completion of the project (long-term), there would be no change in the types and levels of noise, i.e. additional road noise from vehicles, as the project will not increase traffic levels.

3) Proposed measures to reduce or control noise impacts, if any:

 Other than limiting construction to daylight hours and primarily on weekdays, no additional measures to reduce or control noise impacts are proposed.

8. Land and Shoreline Use

 a. What is the current use of the site and adjacent properties? Will the proposal affect current land uses on nearby or adjacent properties? If so, describe.

 Sauk Prairie Road comprises the current use of the site. The project will not affect adjacent agricultural uses.

 b. Has the site been used as working farmlands or working forest lands? If so, describe. How much agricultural or forest land of long-term commercial significance will be converted to other uses as a result of the proposal, if any? If resource lands have not been designated, how many acres in farmland or forest land tax status will be converted to non-farm or non-forest use?

 The project site has not been used for working farmlands or working forest lands. The existing agricultural use is primarily the mowing of fields of reed canarygrass for hay or silage.

1) Will the proposal affect or be affected by surrounding working farm or forest land normal business operations, such as oversize equipment access, the application of pesticides, tilling, and harvesting? If so, how:

 The project will not affect or be affected by surrounding working farm or forest land normal business operations.

 c. Describe any structures on the site.

 The only structures are the existing roadway and culvert.

 d. Will any structures be demolished? If so, what?

 The existing culvert will be removed, and a 600-foot section of the roadway will be raised higher by up to 3 feet.

 e. What is the current zoning classification of the site?

 The current zoning is Rural Diversification – RD.
f. What is the current comprehensive plan designation of the site?
 The current comprehensive plan designation is Rural Residential – RD (1 DU/5 acres).

g. If applicable, what is the current shoreline master program designation of the site?
 N/A

h. Has any part of the site been classified critical area by the city or county? If so, specify.
 While the roadway itself is not a critical area, there are Category III wetlands and Type F streams adjacent to both sides of Sauk Prairie Road.

i. Approximately how many people would reside or work in the completed project?
 N/A

j. Approximately how many people would the completed project displace?
 None.

k. Proposed measures to avoid or reduce displacement impacts, if any:
 N/A

l. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any:
 All work will be consistent with the applicable area comprehensive plans and policies.
 Review will be by County planners.

m. Proposed measures to ensure the proposal is compatible with nearby agricultural and forest lands of long-term commercial significance, if any:
 The proposed project will not impact nearby agricultural and forest lands of long-term commercial significance, so no measures are proposed.

9. Housing

a. Approximately how many units would be provided, if any? Indicate whether high, middle or low-income housing.
 N/A

c. Approximately how many units, if any, would be eliminated? Indicate whether high, middle, or low-income housing.
 N/A

f. Proposed measures to reduce or control housing impacts, if any:
 N/A
10. Aesthetics

a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed?
 An 600-foot section of Sauk Prairie Road will be raised by up to 3 feet higher to accommodate the culvert. Guardrails that will be installed on each side of the roadway will be a couple of feet higher than the roadway surface.

b. What view in the immediate vicinity would be altered or obstructed?
 There will be a slight reduction in views from the property on the north side of the roadway due to the road being built approximately 3 feet higher than the existing roadway.

c. Proposed measures to reduce or control aesthetic impacts, if any:
 None are proposed.

11. Light and Glare

a. What type of light or glare will the proposal produce? What time of day would it mainly occur?
 The culvert replacement and roadway improvement will not produce light or glare.

a. Could light or glare from the finished project be a safety hazard or interfere with views?
 N/A

b. What existing off-site sources of light or glare may affect your proposal?
 Any existing off-site sources of light or glare will not affect the proposal.

d. Proposed measures to reduce or control light and glare impacts, if any:
 N/A

12. Recreation

a. What designated and informal recreational opportunities are in the immediate vicinity?
 As the project is located in a rural, agricultural area, designated and informal recreational opportunities are not in the immediate area.

b. Would the proposed project displace any existing recreational uses? If so, describe.
 No.

 Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project or applicant, if any:
 N/A
13. Historic and Cultural Preservation

a. Are there any buildings, structures, or sites, located on or near the site that are over 45 years old listed in or eligible for listing in national, site, or local preservation registers located on or near the site? If so, generally describe.

The site was screened by Snohomish County Public Works to determine the project’s proximity to known archaeological and cultural sites. There are no known recorded sites located where potential ground disturbance activities are anticipated, and there are no recorded archaeological sites, or known places or objects listed on or proposed for national, state, or local registers in the greater project area.

b. Are there any landmarks, features, or other evidence of Indian or historic use or occupation? This may include human burials or old cemeteries. Are there any material evidence, artifacts, or areas of cultural importance on or near the site? Please list any professional studies conducted at the site to identify such resources.

There are no landmarks, features, or other evidence of Indian or historic use or occupation located at the project site, including human burials or old cemeteries. There is no material evidence, artifacts, or areas of cultural importance on or near the site. A professional study has not been conducted at the site.

c. Describe the methods used to assess the potential impacts to cultural and historic resources on or near the project site. Examples include consultation with tribes and the department of archaeology and historic preservation, archaeological surveys, historic maps, GIS data, etc.

A cultural resources screening was conducted using archaeological site GIS data provided to Snohomish County by the Washington Department of Archaeology and Historic Preservation as part of a data sharing agreement. No recorded sites were found as part of this screening. The Sauk-Suiattle Tribe was notified about the project and invited to share any concerns they may have.

d. Proposed measures to avoid, minimize, or compensate for loss, changes to, and disturbance to resources. Please include plans for the above and any permits that may be required.

The County contractors would look out for cultural materials and human remains. Although no known archaeological sites are in proximity to the project location, there is still a possibility that cultural resources could be present. If cultural materials or resources are encountered, the construction crew should suspend work in this portion of the project and contact Public Works. If suspected human remains are found, all project work should cease and additional contacts made with the appropriate Native American tribe(s), Snohomish County Medical Examiner, and the Washington Department of Archaeology and Historic Preservation.
14. Transportation

a. Identify public streets and highways serving the site, or affected geographic area, and describe proposed access to the existing street system. Show on site plans, if any.

Sauk Prairie Road is classified as “Local Access – Rural”. It runs between Darrington and the Skagit County line about one mile north of the project location. The 2013 Average Daily Traffic count was 250-300 cars, and there are several residences either side of the roadway between Darrington and the project site. A U.S. Forest Service road to the south of the project limits leads to approximately 5 homes.

b. Is the site or affected geographic area currently served by public transit? If so, generally describe. If not, what is the approximate distance to the nearest transit stop?

No. Community Transit Route 230 provides transit service between Arlington and downtown Darrington. Therefore, the nearest transit stop is a distance of approximately 3.2 miles.

c. How many additional parking spaces would the completed project or non-project proposal have? How many would the project or proposal eliminate?

The project will not add or eliminate any parking spaces.

d. Will the proposal require any new or improvements to existing roads, streets, pedestrian, bicycle or state transportation facilities, not including driveways? If so, generally describe (indicate whether public or private)

To accommodate the larger culvert, a 600-foot section of the road will need to be raised up to 3 feet higher. This will not affect bicycle or pedestrian facilities, or residential driveways.

e. Will the project or proposal use (or occur in the immediate vicinity of) water, rail, or air transportation? If so, generally describe.

No.

f. How many vehicular trips per day would be generated by the completed project or proposal? If known, indicate when peak volumes would occur and what percentage of the volume would be trucks (such as commercial or non-passenger vehicles). What data or transportation models were used to make these estimates?

The project will not generate additional vehicular trips due to the very rural character of the area.

g. Will the proposal interfere with, affect or be affected by the movement of agricultural and forest products on roads or streets in the area? If so, generally describe.

The road closure may affect movement of agricultural or forest products if they are transported along Sauk Prairie Road, however, a 2-mile detour will be implemented so the interference will be minimal.
h. Proposed measures to reduce or control transportation impacts, if any:
 A full road closure is anticipated for up to 3 months, however, a 2-mile detour utilizing
the Crawford Loop Road is planned to alleviate disruption to the public’s and the U.S.
Forest Service’s use of the road. At the project location, the Crawford Loop Road runs
parallel to and west of Sauk Prairie Road, but it connects to Sauk Prairie Road at the
Skagit County line.

15. Public Services

a. Would the project result in an increased need for public services (for example: fire
 protection, police protection, public transit, health care, schools, other)? If so, generally
describe.
 No.

b. Proposed measures to reduce or control direct impacts on public services, if any.
 N/A

16. Utilities

a. Utilities currently available at the site:
 There is an overhead power line running along the north side of the road, with poles
 and guy wire installations located less than 10 feet from the road. There is also an
 underground telephone line on the north side of the road, with an above ground
 pedestal located close to the power poles.

b. Describe the utilities that are proposed for the project, the utility providing the service, and
 the general construction activities on the site or in the immediate vicinity which might be
 needed.
 No new utilities are proposed for the completed project. The two poles at STA 18+60
 and STA 26+90 will need to be relocated away from the edge of the roadway. The
 telephone lines and pedestal may need to be relocated.

C. SIGNATURE
The above answers are true and complete to the best of my knowledge. I understand that the
lead agency is relying on them to make its decision.

Signature: ________________
 Julie Highton

Name of Signee: ____________
 Julie Highton

Position and Agency/Organization: ____________
 Senior Planner, Snohomish County Public Works

Date Submitted: ____________
 4/19/17